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INTEGRATION OF THE EQUATIONS OF PLANE STATIONARY NON-LINEAR FILTRATION*

G.A. DOMBROVSKII

Plane stationary filtration of an incompressible liquid is considered.
Special filtration laws are singled out, allowing efficient integration
of a system of equations of motion which are linearized by a Legendre
transformation and put into canonical form. (For Legendre
transformations in gas dynamics see /1, 2/, and in non-linear filtration
see /3/}. The solution of the problem of a point source in a strip is
given as an example for one of the suggested filtration laws with a
limit slope.

1.Let z = z-+ iy be the flow plane, ¥ the magnitude of the filtration velocity vector, 8
the angle of the filtration velocity vector with r-axis, ¢ = —H -+ const, where H# is the
pressure head, ¥ the stream function and @ (v) the function determining the filtration law.
We have /4/

¢, = O (Wcosb, ¢, =P )sin®, P, = —vsinb, P, =vcos0

{where the subscripts denote partial differentiation with respect to the corresponding vari-
ables).
We assume

S = =@+ 29, + ¥ T = — $ + . + 1y
Taking v and 8 as the independent variables, we obtain

;=0 WX, Se=0®)Y, T,=Y, Ty = —pX
X =zcosB 4+ ysin8, ¥ =yecos® — zsin 8

These equalities give the linear system
Se=D @) Ty, Sp=—D () v717,
and the transformation formula into the flow plane
z = ¢ (—p7 1T 4 iD15)
I1f, using the eguations,

x:VML?:_(L)_’ G&S.l/a—vq;-—((l:;))—dv (1.1)

we introduce a function 4 and a variable o to replace U, we arrive at a canonical system
of eguations that is well-known in gas dynamics:
S = 1 {0} Toy, So = —y(0) To
It is clear that the functions
p{o, 0) =Sy, v{o, 0) =Ty

satisfy the same system of equations as the functions S (¢, 8) and T (0, 8). We have

Bo = % (8) vo, o = — (0) vo 1.2)
where the functions for which this system is written can be introduced directly via the
equalities p =Y and v = —vX. Using the functions u{c,8) and v (s, §), the trans-
formation into the flow plane is given by the formula

7 ='e® (—ypt 4 @Y 1.3y
From {1.1) it follows that
ydvldo = ®, d®/do = v (1.4)
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For a given function 1y (¢6) these relations can be considered as a system of ordinary
differential equations, whose solution determines the functions ® (o; C,, C,) and v (o; C1,C;)
with arbitrary constants C, and C,. Hence for a given function % (¢) a corresponding family
of filtration laws is established in parameterized form (with parameter o).

2. We will consider the cases when y=a/o® and ¢y = acth®c (a = const > 0).
For the first case the solution of system (1.2) can be represented as
B =ac'Re F', v = Im (F — oF") (2.1)
and in the second case as
p = —a Re (F — cth oF’), v = Im (F — th oF)

where F is an arbitrary analytic function of the complex variable o =0+ 0 /2/. of
course a representation also exists for the pair S (o, 8) and T (o, 9).
If ¥ (0)=a/o® then the corresponding family of filtration laws is given by the formulae

® =01'(C;sho+4 Cycho), v==a1[C,(06cho-—sho)+
C, (6 sh 6 — ch 0)]

We put C,=0. We obtain a filtration law with a limit slope (A>0 and > 0)

g2
®/) = sh o/0, av/ih = o6cho —sho (2.2)
where instead of C(, we have introduced the notation A.

This law is shown in Fig.l by curve 1. Unlike previously
k4 proposed laws /3, 5, 6/ with limit slopes for the solution of
A /

/

plane filtration problems, this one is convex. The inequalities
dD/dv >0 and d@/di® < 0 are satisfied for all v in the
“ / interval [0, o). For o =0 we have v =0, @ = A, dD/dv =
oo and d*P/dpt = — oo. If G-—>oo0 then v— oo, ®—> 00, dD/dv—
L 0 and d&*@/di* —0.
The family of filtration laws for 4 (0)=acth®o is given
by the formulae

]

Z
12 ;

0 02 04 a5 av/A @ = C1lh20420) - Co
sho

3 L Cy (sh20 —20)— C»

Fig.1 T T

We put C; =24 and C(,=0. We arrive at a filtration law with limit gradient (A >0,
c>0)

@ _ sh20- 20 av _ sh2¢0-—2¢

A 4sho ’ A 4cho

This law is represented by curve 2 in Fig.l. For small values of the filtration rate it
has the property d’®/dv* <0, (curve 2 on Fig.l has a point of inflection). For all v>0
we have dO/dv>0. For ¢ =0 the equalities v = 0,® = A, d0/dv = oo, &D/d1® = — o are
satisfied. If 0 -—+> o, then v-—> o0, ® > 0, dl/dv—>a and d&O/d? — 0.

The simplest condition is % = a = const. In this case .§ — a7 and p — iav are analytic
functions of ©. The corresponding family of filtration laws is given by the formulae

O =C,sho+Cycho, av =C;cho+ C,sho
For €, =C, we have a linear law and for €, =0,a =1 the law considered in /5/.

3. We will apply law (2.2) to the problem of a point source in a strip.

Let the strip containing the flow be bounded by the lines y= +i! and y=—1L The
walls bounding the flow are impermeable. A point source of strength 4; is located at the
origin of coordinates. The magnitude of the filtration velocity vector at left and right
infinity is v =g/l, and we denote the corresponding value of ¢ by o, By definition v=0
at the boundaries of the stagnation zones and conseqguently g =0, v = 0.

By virtue of the flow's symmetry it is sufficient to investigate only its first quadrant.
This part of the flow corresponds to the half-strip 0<6< /2, >0, in the o plane, at
whose boundary the equalities

(o, 0)=0(@>o0y), n(0,0)=IAolsho(0 <oc<aq)
v (0,8 =00 <0 -7x/2), u(o,n/2)=0(@0>0

are satisfied.
As a result of the substitution
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o
1
F= TS W (0)do (g == const)
,

we obtain in place of (2.1) the representation

(]
p=o"ReW(0), v=alim| S W (0) do — oW (m)] (3.1)

(2

with an arbitrary analytic function W (o) = U (0,8} iV (o, 6).
Let @, =in/2. The transformed boundary condition will be satisfied if the equality
U=1Isho is satisfied for 8=10,0<0o<¢, and on the remaining part of the boundary U =0.
We map the half-strip under consideration in the o plane onto the upper half-plane of
the complex variable §{ =%+ in using the function { = ch 2¢. On the boundary 1 =0 we
have

U=0¢<t), U=0yVE—-D2 (1<Ech2oy
U=0 (E>ch2g)

Having determined the function W ({) for the boundary data with the help of the Schwarz
integral, we return to the variable o and obtain the required function W(e) in the form

. shw — shay
=5 (2sho +sholn FET RN "

The boundary of the stagnation zone is determined by the equation
2 (@) =410 [—U g+ iUl

which we obtain from (1.3) by applying L'Hopital's rule and taking into account the first of
the formulae (1.2), (1.4) and (3.1) in the transformation process. Using solution (3.2) we
establish the following formulae for constructing the boundary of the stagnation zone:

nr 4sh? gy cos* @ Ty 5 sin 0
T~ T(sin?0 fshio) ' 1 T aretg <o+
sh? gy cos? 0 — ch? gy 8in® 0

(sin? 0 -+ sh? g))?

2shgysin @

The result of the calculation, carried out using these formulae for some values of the
parameter b = ey /A, 1S shown in Fig.2.

7=
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Fig.2

In the case =0, y, =0 we have the particularly simple solution
W = 2iag/(n sh? ©)
This can be obtained by replacing 1 by g, in (3.2), using the second of formulae (2.2),
and then taking the limit as o, —0.

The boundary of the stagnation zone in the limiting case I!= oo, =0 is given by the
formula

4dag { 3cos®® |, . 1--3cos?
2(8) = nk( sinfg sind )

The result of a calculation using this formula is shown in Fig.3 in coordinates z* = Az/(ag),
y* = My/(ag) .
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