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INTEGRATION OF THE EQUATIONS OF PLANE STATIONARY NON-LINEAR FILTRATION* 

G.A. DOMBROVSKII 

Plane stationary filtration of an incompressible liquid is considered. 
Special filtration laws are singled out, allowing efficient integration 
of a systemof equations of motion which axe linearized by a Legendre 
transformation and Put into canonical form. (For Legendre 
transformations in gas dynamics see /l, 21, and in non-linear filtration 
see /3/). The solution of the problem of a point source in a strip is 
given as an example for one of the suggested filtration laws with a 
limit slope. 

l-Let .z = s-i-@ be the flow plane, v the magnitude of the filtration velocity vector, !3 
the angle of the filtration velocity vector with z-axis, 'p = -H + const, where H is the 
pressure head, II, the stream function and (D(u) the function determining the filtration law. 
We have J4J 

'px = cp (u) cos 8, ‘pv = Qt (u) sin e, tpx = -0 sin 0, qv = Y ~0s e 

(where the subscripts denote partial differentiation with respect to the corresponding vari- 
ables). 

We assume 

Taking V and 8 as the independent variables, we obtain 

S,=cD'(v)X, Se=Q,(u)Y, T,=Y, Tg=-UX 
X=zcosB+ysinO, Y=ycos@--sing 

These equalities give the linear system 

S,, = @ (u) T,, S, = -@’ (v) zrlTe 

and the transformation formula into the flow plane 

z = e*e (--~+TQ + i@-V~) 

If, using the equations, 

we introduce a function x and a variable (I to replace V, we arrive at a canonical system 
of equations that is well-known in gas dynamics: 

Se = fc (0) T,, S, = -_x (0) T0 

It is clear that the functions 

u (a, 0) = Se, v (0, e) = Te 

satisfy the same system of equations as the f,unctions S (a, et and Tfa, I3). We have 

Pe = x(e) vu, I*0 = -x(u) ve (1.2) 

where the functions for which this system is written can be introduced directly via the 
equalities p = (PY and Y = -vX. Using the functions ~(a, 9) and v(0,6), the trans- 
formation into the flow plane is giWen by the formula 

s &&a (_vv-1 + Q&-l) (1.3) 

From (1.1) it follows that 

&Id0 = @,, diDId0 = xv (1.4) 
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For a given function x(u) these relations can be considered as a system of ordinary 
differential equations, whose solution determines the functions cf,(cr;C,,C,) and u(u;C~,C~) 
with arbitrary constants C, and C,. Hence for a given function x(u) a corresponding family 
of filtration laws is established in parameterized form (with parameter o). 

2. We will consider the cases when x = alo and x = a cth? IJ (a = const > 0). 

For the first case the solution of system (1.2) can be represented as 

p=a&‘ReF’, Y-Im(F-OF’) 

and in the second case as 

p = -aRe (F- cthoF'), v = Im (F- thaF') 

(2.1). 

where F is an arbitrary analytic function of the complex variable o=o+ie /2/. Of 
course a representation also exists for the pair S (u, 0) and T (u, 0). 

If x (u)= a/u2 then the corresponding family of filtration laws is given by the formulae 

Q, = 0-l (C, sh u+ C, ch u), u == a~’ [C, (u ch u - sh U) $ 

C, (u sh u - ch u)l 

We put C,= 0. We obtain a filtration law with a limit slope (hj0 and 02 0) 

O/h = sh uiu, auih = u ch u - sh u (2.2) 

where instead of Cl we have introduced the notation A. 

Fig.1 

This law is shown in Fig.1 by curve 1. Unlike previously 
proposed laws 13, 5, 6/ with limit slopes for the solution of 
plane filtration problems, this one is convex. The inequalities 
d@!dr > 0 and dWldu2< 0 ,are satisfied for all v in the 
interval [O. co). For u = 0 we have L' = 0, Q, = h, dWdv = 

and dVDldu2 = - co. If 
T and d2@,ldr’ -0. 

u-m then v-too; @--too, dD1du-t 

The family of filtration laws for ~(u)=acth'u 
by the formulae 

is given 

4,= Cl(shZa+Za)- Cz 
she 

L’ = Cl (sh 20 - 20) - c, 
ache 

We put C, =hi4 and C, = 0. We arrive at a filtration law with limit gradient 
u > 0) 

4, sh&-i+Zu PhZu-20 

h 4sho ’ 
+ 

4cho 

This law is represented by curve 2 in Fig.1. For small values of the filtration 

has the property d2@/dv2<0, (curve 2 on Fig.1 has a point of inflection). For all 
we have d@idv > 0. For u = 0, the equalities v = O,@ .= h,d@ldv = m,#@,ldu2 = --oo 
satisfied. If ~--too, then v-m, @+m,d@ldv+a and d2Dldv2 -+ 0. 

~.. 

(A >O, 

rate it 
v>o 
are 

The simplest condltlon is X = a = con&. In this case S - iaT and p - iav are analytic 
functions of o. The corresponding family of filtration laws is given by the formulae 

Q = C, sh u + C, ch u, au = C, ch u + C, sh u 

For C, = C, we have a linear law and for C, = 0,a = 1 the law considered in /5/. 

3. We will apply law (2.2) to the problem of a point source in a strip. 
Let the strip containing the flow be bounded by the lines y= +z and y=--1. The 

walls bounding the flow are impermeable. A point source of strength 4q is located at the 
origin of coorainates. The magnitude of the filtration velocity vector at left and right 
infinity is v, = q/l, and we denote the corresponding value of (r by 0,. By definition v=o 
at the boundaries of the stagnation zones and consequently O=O,V == 0. 

By virtue of the flow's symmetry it is sufficient to investigate only its first quadrant. 
This part of the flow corresponds to the half-strip 0 <e < n/2, 4 > 0, in the o plane, at 
whose boundary the equalities 

v (0, 0) = 0 ((J > d. p (CT, 0) = lhr'sh 0 (0 < (i < a,) 

V (0, 0) = 0 (0 .-. 0 .' n/Z), p (0, n/Z) = 0 (u > 0) 

are satisfied. 
As a result of the substitution 
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we obtain in place of (2.1) the representation 

p = u-1 Re w (co), v = ~1Imi.j w (o)do-u~ (a)] 
00 

(3.') 

with an arbitrary analytic function W(o)= U(a,O)+ iV(a.8). 
Let o0 = in/Z. The transformed boundary condition will be satisfied if the equality 

Lr=Ihsha is satisfied for @=O,O<o<a,, and on the remaining part of the boundary (I = 0. 
We map the half-strip under consideration in the o plane onto the upper half-plane of 

the complex variable 5= E+ in using the function c= ch 20. On the boundary n = 0 we 
have 

u = 0 (5 < I), (I = zh r/(5 - 1)/z (1 < 5 < ch 20,) 
u = 0 (5 > ch 2%) 

Having determined the function :W(i) for the boundary data with the help of the Schwarz 
integral, we return to the variable o and obtain the required function W(o) in the form 

she- she, \ 
sho+Sho, 1 (3.2) 

The boundary of the stagnation zone is determined by the equation 

z ((3) = h-'9 [-Uo8 + iu,l,,o 

which we obtain from (1.3) by applying L'Hopital's rule and taking into account the first of 
the formulae (1.2), (1.4) and (3.1) in the transformation process. Using solution (3.2) we 
establish the following formulae for constructing the boundary of the stagnation zone: 

nr 4shl D,CIJS~ 8 sin I3 
1 1 (sina + shao# , + = n---2 arctg sh + 

Zsho,sin 0 
sh2 o1 ccd 0 - ch’ CJ, sin* 8 

(sina + shao# 

The result of the calculation, carried out using these formulae for some values of the 
parameter b = q/b, is shown in Fig.2. 

0 a.5 1 1.5 X/l 

Fig.2 

In the case Z= CO, u,=O we have the particularly simple solution 

W = %iaq/(n sh* o) 

This can be obtained by replacing z by q/c, in (3.2), using the second of formulae (2.2). 
and then taking the limit as o,-0. 

The boundary of the stagnation zone in the limiting case E= m, vl= 0 is given by the 
formula 

The result of a calculation using this formula is shown in Fig.3 in coordinates Z* = hd(aq), 
y* = hy/(aq) . 
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Fig.3 
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